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Abstract 

Background 

Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects a substantial 
portion of combat veterans and poses serious consequences to long-term health. 
Consequently, the identification of diagnostic and prognostic blood biomarkers for PTSD is 
of great interest. Previously, we assessed genome-wide gene expression of seven brain 
regions and whole blood in a social defeat mouse model subjected to various stress 
conditions. 

Results 

To extract biological insights from these data, we have applied a new computational 
framework for identifying gene modules that are activated in common across blood and 
various brain regions. Our results, in the form of modular gene networks that highlight spatial 
and temporal biological functions, provide a systems-level molecular description of response 
to social stress. Specifically, the common modules discovered between the brain and blood 
emphasizes molecular transporters in the blood-brain barrier, and the associated genes have 
significant overlaps with known blood signatures for PTSD, major depression, and bipolar 
disease. Similarly, the common modules specific to the brain highlight the components of the 
social defeat stress response (e.g., fear conditioning pathways) in each brain sub-region. 

Conclusions 

Many of the brain-specific genes discovered are consistent with previous independent studies 
of PTSD or other mental illnesses. The results from this study further our understanding of 
the mechanism of stress response and contribute to a growing list of diagnostic biomarkers 
for PTSD. 

Background 

Post-traumatic stress disorder (PTSD) is an anxiety disorder that is triggered after exposure to 
traumatic events. Individuals with PTSD have persistent fear memory and often feel 
emotionally numb. If left untreated, PTSD can be life-threatening, as it is often linked with 
substance abuse and severe depression. A study of 289,328 Iraq and Afghanistan veterans 
who were first-time users of Veterans Affairs (VA) health care between 2002 and 2008 
showed that 22% of veterans were diagnosed with PTSD and 17% were diagnosed with 
depression [1]. Given the predominance of PTSD and its negative consequences to long term 
health, it is very important to identify measurable and quantifiable biological parameters, i.e., 
biomarkers, which can serve as prognostic and diagnostic indicators for PTSD. Recent 
studies have proposed several candidate brain gene biomarkers that are associated with PTSD 
[2,3]. Even though PTSD is an illness of the brain, taking brain biopsy or spinal fluid is not a 
viable option for diagnosis. Instead, blood can be used as a surrogate for brain tissue for the 
purpose of identifying biomarkers [4-8]. Specifically, Rollins et al. recently found over 4,100 
brain transcripts co-expressed in the blood of healthy human subjects [9]. Furthermore, it was 
shown that the mRNA levels of certain transcripts in PTSD patients remain changed with 
respect to controls even 16 years after the traumatic event [8,10]. Thus, blood gene 



expression assays are of particular interest for both short-term and long-term diagnosis, 
prognosis, and treatment of PTSD. However, the identification of predictive blood markers 
requires the accurate separation of biologically relevant core markers from unrelated 
downstream signals. This task is particularly challenging when using surrogate tissues, since 
biological noise from the surrogate is confounded with noise from the primary tissue. 
Fortunately, studies performed with model organisms allow the direct assay of both surrogate 
and primary tissues. By characterizing the molecular changes present in both tissues 
simultaneously, we can more effectively filter out spurious signals in the surrogate. 

We recently used repeated exposures of mice to a trained aggressor mouse as a “social 
defeat” model for evaluating PTSD symptoms [11]. This social defeat model has often been 
used to induce anxiety, depression-like and avoidance symptoms, which are the most 
prominent psychiatric features of PTSD and common co-morbidities. Using a “cage-within-
cage resident-intruder” protocol (designed to model unpredictable threats of daily trauma), 
we exposed individual subject male C57BL/6 J mice to single aggressors for six hours daily 
for 5 or 10 days, and we placed individual control subject mice in the same cages but in the 
absence of any other mice. After allowing the subject animals to recover for either 1 or 10 
days (5 day exposure) or 1 or 42 days (10 day exposure), we then collected tissue samples of 
blood and seven brain regions of mice under the different stress conditions and measured 
gene expression levels of these tissues using DNA microarrays. As described in [11], the 
durations of aggressor exposure were chosen to simulate shorter term (5-day) and longer term 
(10-day) stress. The shortest recovery phase duration (1 day) was chosen to study the 
immediate effects of stress. The longer of the two recovery phase durations for each exposure 
time were selected based on behavioral tests conducted throughout the study. These tests 
demonstrated 5-day exposure defeated mice showed signs of recovery around 10 days post-
exposure, and 10-day exposure defeated mice showed signs of recovery at much longer times 
(up to 42 days post-exposure). Because PTSD represents a persistent stress response, it is 
important to identify differentially expressed genes (DEGs) active both immediately after the 
exposure and after a long recovery period. Thus, in the current work we focus on genes 
consistently over-/under-expressed across all experimental conditions, rather than on DEGs 
from individual conditions (we will address the latter in future work). The seven brain 
regions analyzed in this study were chosen due to their known roles in fear memory 
formation, emotion regulation, and decision-making—all processes important to the 
development and pathology of PTSD [3]. In particular, the amygdala regulates fear memory 
and emotional aspects; the hippocampus is the center for short term memory, and the 
prefrontal cortex controls decision-making. In addition, the ventral striatum is strongly 
associated with emotional and motivational aspects of behavior, the stria terminalis serves as 
a major output pathway of the amygdala, and the septal area plays a role in reward and 
reinforcement along with the ventral striatum. We note that a similar protocol has also 
recently been used to profile social defeat-induced gene expression changes in the nucleus 
accumbens, ventral tegmental area, and blood plasma [12-14]. 

The field of systems biology has demonstrated that complex diseases such as PTSD are not 
caused by changes in a single gene or pathway. Rather, changes occur in a hierarchy of gene 
modules which collectively contribute to disruption of essential cellular functions [15-17]. To 
characterize this module hierarchy, many researchers have adopted an unsupervised approach 
[17-25] that constructs a network based on gene expression data and identifies functional 
modules based on network topology or “guilt-by-association”. However, these methods 
usually face the problem of under-determination, where the number of interactions to be 
inferred far exceeds the number of independent measurements [22]. Other studies have 



adopted a supervised network identification approach that begins with a list of “seed” genes 
and gradually expands the list by adding interacting genes, ultimately resulting in a compact 
gene module network [26-28]. These supervised approaches have shown good performance 
for classification tasks, and we expand upon one of them in this work. 

Previous computational and experimental work suggests that functional gene modules are 
highly conserved across conditions, tissues, and species [17,29,30]. Direct comparisons have 
been made between multiple mouse tissues [21], between human and mouse brains, and 
between human blood and brain tissue [4]. However, modules inferred separately from 
different conditions yield partial overlaps at best, which makes drawing comprehensive 
biological conclusions difficult. Recently, we developed a new module identification tool 
entitled COMBINER (COre Module Biomarker Identification with Network Exploration) 
that identifies distinct conserved expression modules across various conditions. The 
fundamental idea behind COMBINER is to infer candidate modules from data of one 
condition and validate the inferred modules in other conditions using supervised 
classification. Those candidate modules that perform well in classifying samples from 
multiple conditions are then defined as “core modules”. There are three advantages to this 
approach: (1) The resulting modules are compact and thus exclude unrelated downstream 
signals; (2) The modules are distinct and well-defined with respect to which 
conditions/tissues/species invoke them; (3) This method provides multiple robust 
discriminative biomarkers co-validated in at least two experimental conditions. Given these 
advantages, we have applied a customized version of COMBINER to mouse social defeat 
gene expression data deriving from seven brain regions along with blood to identify common 
expression modules. 

In this work, we have attempted to answer two biological questions: 1. Which expression 
modules act in common between blood and brain tissue of the social defeat mouse model? 2. 
Which modules act in common between different brain regions? To do so, we first performed 
a pair wise comparison of differential gene expression, biological pathways, and GO terms 
between tissues. We then applied a new version of COMBINER which we modified in two 
ways (discussed below). First, we used linear models to deconvolve time-dependent effects 
on gene expression from effects due to social defeat. Second, we developed an improved 
consensus feature elimination method to identify robust modules from data with a relatively 
small sample size. Our results, in the form of blood-brain and brain-brain social defeat core 
module networks, provide a concise biological description of social defeat and generate many 
candidate PTSD biomarkers for future study. 

Results and discussion 

Overlaps of DEGs/DEGOs/DEPaths 

First, we identified differentially expressed genes (DEGs) in each individual tissue across all 
time points using a limma moderated t-test [31]. The numbers of significant DEGs (p ≤ 0.05) 
for each tissue are listed in blue on the diagonal in Figure 1a. We then established the 
significance of DEG overlaps by computing a hypergeometric p-value for each pairwise 
tissue combination (listed in the off-diagonal). Hypergeometric p-values ≤ 0.05 are 
considered significant (cells highlighted in red in Figure 1a). 



Figure 1 Overlap analysis between blood and brain regions. Numbers of significant DEGs 
(a), DEGOs (b), and DEPATHs (c) are listed in blue on the diagonal, while hyper geometric 
p-values are listed in the off-diagonal. P-values ≤ 0.05 are considered significant (cells 
highlighted in red). We consider the DEPATH overlap between hippocampus and stria 
terminalis to be marginally significant (red font), as it has a p-value ≤ 0.1 and is supported by 
a highly significant DEG overlap between the same tissues. (HB: hemibrain (hemisphere), 
AY: amygdala, HS: hippocampus, MPFC: medial prefrontal cortex, VS: ventral striatum, SE: 
septal region and ST: stria terminalis). 

Next, we identified differentially expressed Biological Process GO terms (DEGOs) in each 
tissue by first ranking all genes in descending order of limma significance and then 
performing Iterative Group Analysis (iGA) [32] for each GO term with ≤ 100 constituent 
genes. We computed p-values for each term’s iGA score using a null distribution obtained via 
1000 random permutations of the original gene order. The numbers of significant DEGOs (p 
≤ 0.05) for each tissue are listed in blue on the diagonal in Figure 1b. We established the 
significance of DEGO overlaps in the same manner as in Figure 1a. 

Finally, we identified differentially expressed MSigDB [33] (www.broadinstitute.org/gsea 
/msigdb/) canonical sub-pathways (DEPATHs) in the same manner as DEGOs with the 
following modification. For each pathway, we performed iGA separately for all ordered sub-
pathways ranging in size from three to 10 genes (when genes are ordered in terms of limma 
significance). We selected the highest scoring sub-pathway and established significance as 
before by repeating the procedure on 1000 random gene order permutations. The numbers of 
significant DEPATHs and significant DEPATH overlaps are denoted in the same manner as 
above. 

The overlaps of particular interest include amygdala-hippocampus (AY-HC) and 
hippocampus-stria terminalis (HC-ST), as these two scored significantly in the DEG 
comparison and significantly or nearly significantly, respectively, in the DEPATH 
comparison. These DEPATHs describe processes such as inflammation, diabetes, apoptosis, 
and immune response. Tables 1 and 2 show the significantly overlapping DEPATHs of AY-
HC and HC-ST, respectively. We list the original name of each sub-pathway along with the 
following information from the iGA sub-pathway analysis conducted on the hippocampus 
data: number of genes in the highest scoring sub-pathway (Sig. Genes), sub-pathway 
permutation p-value, and Benjamini-Hochberg corrected sub-pathway false discovery rate 
(FDR). We note that none of these pathways would have been identified as significant from 
the hippocampus data alone when using a FDR ≤ 0.05 cut-off. We also note significant 
overlaps in the blood-septal region and blood-Hemibrain comparisons, where DEGOs related 
to apoptosis and DEPATHs related to insulin/diabetes, respectively, were identified. 
Additional file 1: Table S1 and Additional file 2: Table S2 contains detailed lists of these 
DEGOs and DEPATHs, respectively. 

Table 1 Significantly overlapping DEPATHs between amygdala and hippocampus 
Name Number of significant genes p-value FDR 
BioCarta cytokine pathway 9 <0.002 <0.220 
BioCarta inflam pathway 8 0.002 0.220 
KEGG type I diabetes mellitus 7 0.012 0.440 
KEGG JAK STAT signaling pathway 10 0.014 0.456 
FDR denotes false discovery rate. 



Table 2 Significantly overlapping DEPATHs between hippocampus and stria terminalis 
Name Number of significant genes p-value FDR 
SA caspase cascade 6 0.005 0.400 
BioCarta IL1R pathway 10 0.010 0.440 
KEGG cytosolic DNA sensing pathway 9 0.021 0.499 
KEGG graft versus host disease 6 0.029 0.562 
KEGG prostate cancer 9 0.030 0.562 
BioCarta keratinocyte pathway 9 0.046 0.636 

Core module network 

Although the differential expression overlap analysis provided some biological insight into 
the pairwise molecular similarities between mouse tissues during social defeat, overlap 
results between DEGs, DEGOs, and DEPATHs were not always consistent. Overlap analysis 
between multiple tissues is more desired, while these overlaps are very limited due to the 
high noise-to-signal ratio of microarray. In addition, it was not obvious how best to combine 
the results into an overall biological description of mouse social defeat. Thus, we turned to a 
network-level analysis to provide deeper insight. Because the desired diagnostic biomarkers 
should be generally over-expressed in both the stress treatment and recovery period, we 
extended the COMBINER method [28] to accommodate all four conditions, which resulted in 
multiple-time-segment data. However, we would expect an age effect in the control mice. For 
example, the gene expression patterns of control mice in the 10-day treatment 1-day recovery 
and 10-day treatment 42-day recovery groups were significantly different due to mouse age. 
Thus, we used the limma software [31] to deconvolve the undesired effects of differing 
mouse ages as explanatory variables in a linear model, and we subtracted these variables 
from the original gene expression values. We then applied COMBINER to the “time 
standardized” data to construct a blood-brain network (common modules co-expressed in 
blood and seven brain regions, Figure 2) and a brain-brain network (common modules co-
expressed in six brain regions, Figure 3). 

Figure 2 Blood-brain network. (a) nine expression modules resulted from consensus feature 
elimination; their brain-specific expression locations are indicated with numbered blue 
circles. Time-specific blood expression patterns of each module are displayed using average 
time curves in the form of expression panels. (b) the blood expression level of each gene in 
the nine modules is indicated with a colored circle. Known protein-protein interactions (PPIs) 
are marked by lines connecting genes—blue lines denote within-module interactions, while 
gray lines denote between-module interactions. (c) the putative biological functions of the 
expression modules are listed (as inferred using the KEGG annotation). (HB: hemibrain 
(hemisphere), AY: amygdala, HS: hippocampus, MPFC: medial prefrontal cortex, VS: 
ventral striatum, SE: septal region and ST: stria terminalis; 5D-1D/10D: 5 day treatment, 1 
day/10 day recovery, 10D-1D/ 6 W: 10 day treatment, 1 day/6 week recovery). 

Figure 3 Brain-brain network. (a)  application of COMBINER to brain data yields thirty-
seven core modules. The tissue- and time-specific expression patterns of each module are 
presented in the same manner as before. (b) the expression levels and known PPIs of the core 
module genes are displayed. The shape of a gene represents its inference region, and the color 
denotes its expression level in that region. Blue lines denote known within-module protein-
protein interactions (PPIs), while gray lines denote between-module PPIs. (HB: hemibrain 
(hemisphere), AY: amygdala, HS: hippocampus, MPFC: medial prefrontal cortex, VS: 



ventral striatum, SE: septal region and ST: stria terminalis; 5D-1D/10D: 5 day treatment, 1 
day/10 day recovery, 10D-1D/ 6 W: 10 day treatment, 1 day/6 week recovery). 

Blood-brain network 

We first investigated the expression modules active in both blood and multiple brain regions. 
Starting with the top 100 candidate modules (when ranked by pathway activity absolute t-
score—see Methods and Materials) inferred from blood sample data, we identified modules 
that were also active in each brain region. To do so, we removed features using Consensus 
Feature Elimination until the average classification Area Under the ROC Curve (AUC) 
evaluated on each brain region exceeded 0.75 (see [28] for additional details). After repeating 
this procedure separately for all brain regions, a total of nine core modules remained. Figure 
2a presents each module’s brain region-specific expression patterns. We used average time 
curves (see Methods) to show the time-specific expression pattern of the modules as heat 
maps in Figure 2a. Figure 2b further shows the expression of the core modules and the 
protein-protein interactions (PPIs) between their gene products. The color of each gene 
denotes its expression level in the blood. Blue lines denote known PPIs within modules, 
while gray lines denote known PPIs between modules. Figure 2c lists the putative biological 
functions of the core modules; detailed module information is summarized in Additional file 
3: Table S3. We note that use of COMBINER resulted in seven discriminative blood 
biomarker sets (average 0.81 mean AUC and 0.26 mean error rate) which have each been 
validated using data from one of the brain regions. Table 3 lists the final number of modules 
identified from each blood-brain region pair with the associated mean AUC and mean error 
rate. 

Table 3 Identified final modules between blood and brain regions with the associated 
mean AUC and mean error rate of both tissues 

Validation  HB AY  HC ST MPFC SE VS Core module Core gene 
Inference 

Blood 92 20 23 27 22 2 19 9 43 
Final gene 171 52 51 70 72 7 44  
Mean AUC 0.73 0.85 0.79 0.86 0.76 0.82 0.84 
Mean error rate 0.24 0.24 0.29 0.22 0.31 0.27 0.24 
The mean AUC and error rate were calculated by 500 LDA classifiers with random sampling 
on both tissues. (HB: hemibrain (hemisphere), AY: amygdala, HS: hippocampus, MPFC: 
medial prefrontal cortex, VS: ventral striatum, SE: septal region and ST: stria terminalis). 

The resulting nine core modules represent biological functions related to molecular transport, 
integrin and tight junction function, retinol metabolism, cell cycle, and mRNA transcription. 
Although initially inferred from blood tissue, most of these processes have been previously 
implicated in normal and pathological brain function. For example, tight junctions and ABC 
efflux transporters are present in the blood-brain barrier (BBB) and the blood-cerebrospinal 
fluid barrier (BCSFB) [34,35], and SLC transporters encode facilitated transporters and ion-
coupled secondary active transporters such as neurotransmitters. The latter also represent the 
major class of transporters used in the delivery of drugs to the brain [36]. In addition, 
overexpressed integrin genes lead to vascular remodeling, which is believed to be highly 
correlated with mild Traumatic Brain Injury (mTBI) [37], a disease related to PTSD. Finally, 
retinoids are important for the maintenance of the nervous system and may play a role in 
Alzheimer’s disease [38]. 



The resulting 43 core genes also exhibit ample evidence for association with brain function 
and/or PTSD. In particular, the genes Abca4, Fech, Magoh, Ppp1r12b, and Uros were 
previously shown to be differentially expressed in a human PTSD signature discovered by 
Segman et al. [8]. Seven of the 43 genes closely resemble genes from a blood signature for 
depression (Ahsp, Dhrs9, Map2k2, Slc13a2, Slc16a1, Slc39a3, U2af1) [39,40], while Hmbs, 
Pafah1b1, Sfrs2, and Yes1 were previously identified as bipolar disorder blood markers [41]. 
In addition, Ugt2b5 and Slc6a9 are also present in a blood signature for brain injury [42], 
while Dbh, Itgb1, Ltc4s, and Rhoa were reported to be relevant to mTBI [43]. Many of the 
other genes have been associated with various mental illnesses and neurodegenerative 
diseases, including Schizophrenia, Alzheimer’s disease, and sleep disorder. Detailed 
associations and references are listed in Additional file 4: Table S5. 

Brain-brain network 

In a similar manner as before, we first used COMBINER to infer the top 100 candidate 
modules for each brain region. We then identified common modules for each remaining brain 
region separately, removing features using Consensus Feature Elimination until the average 
AUC of the second region exceeded 0.75. Table 4 lists the final number of modules identified 
from each brain region pair, as well as the number of “core” modules and “core” genes for 
each brain tissue (i.e. those present in the majority of pair wise comparisons). In total, 37 core 
modules with 177 genes were identified in the brain-brain network. 

Table 4 Numbers of COMBINER modules identified using data from six brain regions 
Val AY  HC ST MPFC SE VS Core module Core gene 
Inf  

AY / 17 25 23 0 16 1 4 
HC 17 / 7 25 7 18 6 28 
ST 22 29 / 23 7 22 9 45 
MPFC 22 31 22 / 5 22 9 41 
SE 18 26 25 17 / 28 10 53 
VS 22 30 13 5 5 / 2 6 
(HB: Hemibrain (Hemisphere), AY: amygdala, HS: hippocampus, MPFC: medial prefrontal 
cortex, VS: ventral striatum, SE: septal region and ST: stria terminalis). 

We list the final number of modules identified from each brain region pair, as well as the 
overall numbers of core modules and core genes for each region. Figure 3a displays the 
tissue- and time-specific expression patterns of each brain-brain core module. Figure 3b 
shows the expression levels of the genes in each module, as well as the known PPIs occurring 
between genes. Unlike the blood-brain network, the shape of a gene represents the brain 
region in which it was inferred. Table 5 provides the putative biological functions of the core 
modules as inferred, while detailed module information is summarized in Additional file 5: 
Table S4. 

  



Table 5 The putative biological functions of the core modules in brain-brain network  
Pathway Module Pathway Module 

Steroid 1 Complement and coagulation 20 
Proteolysis 2 Neurotrophin signaling 21 
Notch signaling 3 Regulation of beta cells 22 
Cell adhesion 4 Transmembrane transport 23 
NOD like receptor 5 Myogenesis 24 
Vasopressin 6 G alpha 13 protein 25 
G alpha Q protein 7 HIVNEF pathway 26 
PRARA 8 Steroid 27 
Linoleic acid 9 Purine 28 
Chemokine signaling 10 Oocyte meiosis 29 
Neuroactive ligand receptor 11 Focal adhesion 30 
Muscle contraction 12 Complement and Coagulation 31 
Systemic lupus erythematosus 13 Olfactory transductoino 32 
DNA Repair 14 Class A1 rhodopsin like receptors 33 
IRS Related events 15 Host interaction of HIV factors 34 
Post translational protein modification 16 Peptide ligand biding receptors 35 
Arachidonic acid 17 Calcium signaling 36 
ABC Transporters 18 Downstream TCR signaling 37 
Phosphadylinositol signaling 19   

In the brain-brain core module network, Modules 6, 8, 33, and 15 are of particular interest. 
An active Module 6 (Creb3l2, Prkx, Avp) in the hippocampus indicates a down regulated 
PKA-CREB long term potentiation pathway, which has been shown to impair memory [44]. 
In addition, the activity of Module 8 (Prka1b, Hspa1a, Nfkbia, Jun, Cpt1b) in the septal 
region shows down regulation of a heat shock protein (HSPA1A). Such activity has 
previously been found in other PTSD studies [45]. Module 33 depicts an up regulated 
dopamine pathway in the ventral striatum. This activity could potentially send excessive 
dopamine to the amygdala and other brain regions, which has been shown to lead to increased 
anxiety [46,47]. Finally, Module 15 implies an active pro-inflammatory response in the 
medial prefrontal cortex (MPFC) that agrees with the study in [48]. Other validated findings 
include olfactory impairment in the stria terminalis (ST) (module 32) [49]; alteration of 
complement pathways in the MPFC (module 20) [50] and activated coagulation function in 
the ST (module 31) [51]. 

The above findings highlight that while the putative biological functions of the brain-brain 
core modules largely encompass the DEPATHs identified in the statistical overlap analysis 
(Tables 1 and 2), the COMBINER network-based analysis provides a much richer molecular 
description of mouse responses to social defeat. With additional validation in human studies, 
we expect these findings to yield robust prognostic and diagnostic biomarkers for PTSD. 

Conclusions 

The identification of diagnostic and prognostic blood biomarkers for PTSD currently is of 
great interest. In this work, we have improved the COMBINER method—a computational 
framework for identifying gene expression modules that are activated in common across 



experimental conditions—and applied it to blood and brain data from a mouse social defeat 
model. The resulting gene networks highlight stress-related biological processes active in 
both brain and blood and provide a comprehensive molecular description of social defeat. In 
total, our approach identified seven blood biomarker sets that have each been validated for 
classification performance in one brain sub-region. Some of the genes and processes 
discovered are consistent with previous independent studies of PTSD or other mental 
illnesses, while others represent novel candidate PTSD biomarkers. We note that the same 
approach can be readily applied to other disease models to construct gene networks that are 
activated in common across tissues; future work will focus on this task. 

Methods 

Blood, organ and tissue collection 

Terminal organs, brain regions, and blood samples from subject and control C57BL/6 mice 
were collected after 24 hours, or 6 weeks (42 days) post 10-day social stress, and 24 hours or 
1.5 weeks post 5-day social stress. Brains of C57BL/6 mice were carefully removed from the 
skulls, and left or right hemi-brain from each defeated or control mouse was dissected into 
different anatomical and functional regions: Hemibrain (Hemisphere) (HB), amygdala (AY), 
hippocampus (HS), medial prefrontal cortex (MPFC), ventral striatum (VS), septal region 
(SE) and stria terminalis (ST). The number of defeated and control mice in different regions 
and conditions are summarized in Table 6. 

Table 6 Defeated and control mice (in the form of (number of defeated) / (number of 
control)) in different regions and conditions 
Condition 

5D-1D 5D-10D 10D-1D 10D42D 
Tissue 
Blood (5) / (5) (5) / (5) (5) / (4) (5) / (5) 
HB (Hemibrain) 5) / (5) (5) / (5) (5) / (5) (5) / (5) 
AY (Amygdala) (2) / (3) (4) / (5) (4) / (3) (4) / (3) 
HC (Hippocampus) (4) / (3) (6) / (4) (5) / (6) (5) / (5) 
MPFC (Medial Prefrontal Cortex) (5) / (4) (5) / (5) (4) / (3) (4) / (4) 
SE (Septal Region) (2) / (3) (3) / (2) (3) / (3) (3) / (3) 
ST (Stria Terminalis) (5) / (5) (5) / (5) (4) / (4) (5) / (4) 
VS (Ventral Striatum) (5) / (5) (5) / (5) (4) / (4) (4) / (5) 
(5D-1D/10D: 5 day treatment, 1 day/10 day recovery, 10D - 1D/ 6 W: 10 day treatment, 1 
day/6 week recovery). 

RNA isolation and quality assessment 

Total RNA was isolated according to the Trizol® method (Invitrogen Inc., Grand Island, NY) 
from homogenized whole blood and brain regions. RNA from blood was isolated using the 
PreAnalytiX PAXgene® blood RNA kit (Qiagen Inc., Valencia, CA). We collected the seven 
organ tissues from 5-6 control and defeat mice, respectively. We evaluated RNA integrity 
using the Agilent Bioanalyzer and excluded samples of low quality, which appears to either 
have low total RNA, or low ribosomal RNA (rRNA) mass ratio between 28S and 18S rRNA 
and high amount of non-ribosomal RNAs in the electropherograms. 



Microarray hybridization 

Microarray assays were performed using Agilent’s genome wide mouse expression array (GE 
4x44K v2 two color microarray) slides and kits (Agilent Technologies Inc., Santa Clara, CA) 
following the manufacturer’s protocol. To minimize batch effects, each sample was 
hybridized with a universal common reference that was used for all experiments. Hybridized 
microarray slides were scanned using Agilent Technologies Scanner G2505C US09493743. 

Microarray data processing 

Genespring with feature extraction 10.x (Agilent, CA) was used to process all two-color 
chips. Log2 transformation, Lowess normalization, and quantile normalization were applied 
to normalize within and between microarrays. For the latter, we applied quantile 
normalization separately on data from each tissue. Outlier spots were converted to missing 
values. If more than half of the expression values of a probe were missing, we removed the 
probe from consideration. We then imputed missing values using the k-nearest neighbor 
imputation method. To avoid incurring a bias in favor of genes represented by a greater 
number of probes, we aggregated multiple probes from the same Entrez Gene together by 
computing the mean of the “sibling” probes. We have deposited all microarray data for this 
study at the Gene Expression Omnibus (GEO): 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45035 . 

Linear model 

We used a linear model-based approach to deconvolve the experimental time effects from the 
social defeat expression data. Assuming log-additive effects, our method estimates the 
contributions of each of the four experimental time points and subtracts them away from the 
remaining effect of social defeat. The linear model we used to deconvolve the experimental 
time effect is defined as follows: 
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where Di and Ci i = 1, …, 4 denote log2 gene expression values of defeated and control mice 
in condition i, αdefeat denotes the overall effect of social defeat and β1, …, β4 are the undesired 
time effects. In practice, we solve the above over determined system for each gene separately 
using least squares (implemented in the limma package), carrying forward only the gene-
specific defeat effect for subsequent analyses. 



Differential expression analysis 

As described above in Section 2, we used the R/Bioconductor limma package and iterative 
Group Analysis (iGA) method for differentially expressed gene and GO term/pathway 
identification, respectively. 

COMBINER 

As shown in Figure 4, the COMBINER method first infers the statistically discriminative 
modules from an inference dataset, then validates them in various validation sets using 
consensus feature elimination. If a validated final module is co expressed in at least half of 
the validation sets, then it is defined as a core module. Finally, we project these core modules 
onto known PPI networks. To remove features, we generated 250 groups of 500 classifiers in 
parallel and applied Linear Discriminant Analysis (LDA) with recursive feature elimination 
[52] to each to compute AUCs as well as weight vectors. Each feature was then ranked by its 
average normalized weight. The most consistently low-ranking feature was then removed 
recursively until the average AUC threshold of 0.75 was achieved. At this point, the 
remaining features were considered to comprise the final modules. 

Figure 4 Schematic overview of COMBINER. COMBINER first infers candidate modules 
as activity vectors from each pathway in an inference dataset. It then validates these modules 
in validation datasets by regenerating activity vectors and performing supervised 
classification. Finally, the modules present in at least half of the validation sets are considered 
to be core modules. The resulting core module markers are then projected onto a known 
protein-protein interaction network. We generated 250 groups of 500 classifiers in parallel 
using LDA with recursive feature elimination. Both the classifier AUC and weight vectors 
were computed, and each feature was then ranked by its average normalized weight. The 
most consistently low-ranking feature was then removed recursively until the average AUC 
threshold was achieved. At this point, the remaining markers were considered to comprise the 
final modules. 

In our previous work [28], we applied both the Condition Responsive Genes (CORG) [53] 
and Core Module Inference (CMI) [28] methods to infer candidate modules and express them 
as pathway activities (PAs). In the greedy search process, CORG picks up either up- or 
down-regulated genes, while CMI identifies genes of both directions together. However, 
because of the multiple-time-point nature of the social defeat data, the application of the CMI 
method is not straightforward. Thus, in this work we used only the CORG method with the 
procedure described as follows. For a given pathway, we first rank the standardized gene 
expressions by their limma moderated t-score. If up-regulated genes are dominant, we rank 
the t-score in descending order; otherwise, ascending order is chosen. Next, we aggregate the 
first two genes using the formula  ��� � ���/√2 ; if the expression of this aggregate yields 
a larger absolute t-score than the first gene, this combination is retained as a module with the 
combined expression becoming the PA. Otherwise, the procedure further adds the third gene 
using  ��� � �� � ���/√3 , and so on, until the module-size limit, 25 genes, is reached. 
Finally, we ranked all modules using the absolute value of the pathway activity t-score. 

We faced two major challenges when modifying our COMBINER method. First, the 
multiple-time-point nature of the data initially decreased the binary classification 
performance of the static LDA classifier [52]. Second, the small data sample size leads to a 



large variability of feature ranks after recursive feature elimination. To cope with the first 
challenge, we used a linear model to deconvolve the time effects from the original expression 
values. We solved the second problem by improving our method for consensus feature 
elimination. We generated 250 groups of 500 classifiers in parallel, then removed the bottom 
feature using the voting principle. In general, using additional groups of classifiers will 
further improve the reproducibility of the final modules. In our experience 250 groups were 
sufficient to yield a reproducible result (results not shown). Finally, we used a fixed average 
AUC threshold to determine the final modules instead of the max average AUC threshold 
described in [28]. This was required since the inference and validation sets can be very 
dissimilar, which leads to low values of the max average AUC. 

We obtained pathway information from the MSigDB v3.0 Canonical Pathways subset [54]. 
To decrease redundancy, we applied pathway filtering to remove bulky pathways. This 
resulted in a pathway dataset containing 791 pathways with 5,633 genes assayed in all 
regions. The protein-protein interaction information was obtained from String v9.0 [55]. 

Average time curve 

Let yij be the relative expression level of gene i at the sampling time j. The time-point 
expression patterns were modelled as follows, 

� !  " #$!% � & !  (2) 

where " #$!%  '()�#*�̄,#$!%/�̄-#$!%*% is the population average time curve for gene i 
evaluated at time tj and where εij is the random deviation from this curve. �̄,#$!%  and �̄-#$!%  
are average expressions of disease and control mice respectively for gene i at time tj. 

Software 

COMBINER was implemented in Matlab R2010a with Bioinformatics toolbox v3.5 (Math 
Works Inc., Natick, MA), statconn (http://www.statconn.com/), LinkR 
(http://www.mathworks.com/ matlabcentral/file exchange/5051), and R [56]. The source code 
can be found in Additional files 6 and 7. 
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(a) Tissue AY BL HC HB ST MPFC SE vs 
Amygdala 1789 0.767 1.000 0.518 0.316 0.471 
Blood 1612 0.506 0.424 0.211 0.262 0.705 
Hippocampus 979 0.513 0.446 0.095 
Hemibrain 6619 0.164 1.000 0.999 
Stria Term. 710 0.822 0.324 
Medial PFC 0.677 0.551 
Septal Region 202 0. 124 
Ventral Striatum 1113 

(b) Tissue AY BL HC HB ST MPFC SE vs 
Amygdala 258 0.514 0.182 0.779 0.992 0.723 0.957 0.785 
Blood 324 0.974 0.969 0.926 0.746 0.609 
Hippocampus 277 0.970 0.058 0.689 0.616 
Hemibrain 0.968 0.870 0.912 0.935 
Stria Term. 211 0.796 0.841 0.807 
Medial PFC 249 0.996 0.993 
Septal Region 262 0.238 
Ventral Striatum 302 

(c) Tissue AY BL HC ST MPFC SE vs 
Amygdala 17 0.433 1.000 1.000 1.000 1.000 
Blood 75 0.862 0.875 0.139 0.978 
Hippocampus 0.998 0.064 0.526 0.388 0.331 
Hemibrain 105 0.866 1.000 0.226 0.645 
Stria Term. 39 1.000 0.567 0.948 
Medial PFC 23 1.000 0.500 
Septal Region 42 0.592 
Ventral Striatum 63 
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